

For the sake of the establishment of reliable forest carbon monitoring system

信頼できる森林炭素モニタリングシステムを 構築するために

Yasumasa Hirata
Forestry and Forest Products Research Institute
平田泰雅
森林総合研究所

Recalling REDD(-plus)...

Recalling REDD(-plus)...

Positive incentive

MRV of Forest Monitoring

MRV of Forest Monitoring

Measurement

- (d) To establish, according to national circumstances and capabilities, robust and transparent national forest monitoring systems and, if appropriate, sub-national systems as part of national monitoring systems that:
 - (i) <u>Use a combination of remote sensing and ground-based forest</u> <u>carbon inventory approaches</u> for estimating, as appropriate, anthropogenic forest-related greenhouse gas emissions by sources and removals by sinks, forest carbon stocks and forest area changes;

FCCC/CP/2009/11/Add.1

IPCC method to estimate GHG gas emissions from activities related with LULUCF sector

Forest carbon stock estimation by combination of remote sensing and ground measurements

Total carbon stock = Σ (Forest area *i* x Averaged carbon stock *i*)

Forest area i : forest area of forest type i

Averaged carbon stocki : average d carbon stock in forest type i

 The method is the calculation of carbon stock by monitoring forest land and summing up the forest area and its averaged carbon stock for important forest types.

Total carbon stock = Σ (Forest area, x mean carbon stock,)

On the road to phase 2

Different Methods, Different Accuracy

- Printout vs. On screen
- Interpretation vs. Semi-automatic
- accumulation of practices and know-how

Area Estimation

Classification of objects into forest types

- Generated objects in 1st step are classified into forest types.
- Classification tree is one option to get high quality results.
- Experiences of experts, including interpretation of satellite data and field conditions, are needed.

Segmentation \rightarrow **Classification**

Sampling (forest / non forest)

Whole image → forest / non forest

Sampling (Evergreen / Deciduous, other)

Forest Whole area → evergreen / deciduous, other **Forest** Non forest Non Evergreen evergreen Image Objects Analysis Library Quantication Tixtle Diport Window (96) auticator (Optimal Bio. Classifier) Additiont. Feature Space (A)- Cassification (Implement Threshold (A)- Cassification (Suffernment) (A)- Cassification (Imperest Neighbox) (A)- Cassification (Optimal Box Classifier to the Arubysis Builder R/B Laver L Standard Deviation (3:00) 3(11/1 [5] N7 1.465 Objects

#749-1 WK-entroduck-Grown | D I 19-9-1734 | WK-e

Result of forest type mapping by object-oriented classification

Seasonality

Effects of seasonality in automatic classification

Standardization of images with algorithm for reducing the effect of seasonality

SPOT images (upper: the end of dry season, lower: the beginning of dry season)

Reduction of effect of seasonality by standardizing images with developed algorithm.

Clouds

Destiny of cloud effects on satellite images

Correction & Data mosaic

- Masking of clouds and their shadows
- Topographic correction
- Atmospheric correction
- Mosaic processing

Preparation of cloud-free data

Two types of data from field survey

- For area estimation
 - Training data for image classification
 - Verification data for the result of classification

For estimation of carbon stock per unit area as

emission factor

Tree census data

Field survey for estimating carbon stock

Problems in field survey

- Ownership
- Accessibility and road condition
- Weather
- Topography (steep slope, stream, etc)
- Dangerous animals, insects, and plants
- Illegal logger

Publication of REDD-plus Cookbook

- Hands-on manual on REDD-plus for policymakers, government officials and practicioners
- Based on the UNFCCC decisions and the IPCC guidelines/guidance
- English, Japanese and Spanish
- 151 pages with 36 units of items
- National/subnational level
- Reference guide

